ÌâÄ¿ÄÚÈÝ
ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖª¾ØÐÎABCDÖУ¬±ßAB=2£¬±ßAD=1£¬ÇÒAB¡¢AD·Ö±ðÔÚxÖá¡¢yÖáµÄÕý°ëÖáÉÏ£¬µãAÓë×ø±êÔµãÖØºÏ£®½«¾ØÐÎÕÛµþ£¬Ê¹µãAÂäÔÚ±ßDCÉÏ£¬ÉèµãA¡äÊǵãAÂäÔÚ±ßDCÉϵĶÔÓ¦µã£®£¨1£©µ±¾ØÐÎABCDÑØÖ±Ïßy=-
| 1 | 2 |
£¨2£©µ±¾ØÐÎABCDÑØÖ±Ïßy=kx+bÕÛµþʱ£¬
¢ÙÇóµãA¡äµÄ×ø±ê£¨ÓÃk±íʾ£©£»Çó³ökºÍbÖ®¼äµÄ¹ØÏµÊ½£»
¢ÚÈç¹ûÎÒÃǰÑÕÛºÛËùÔÚµÄÖ±ÏßÓë¾ØÐεÄλÖ÷ÖΪÈçͼ2¡¢3¡¢4ËùʾµÄÈýÖÖÇéÐΣ¬ÇëÄã·Ö±ðд³öÿÖÖÇéÐÎʱkµÄȡֵ·¶Î§£®£¨½«´ð°¸Ö±½ÓÌîÔÚÿÖÖÇéÐÎϵĺáÏßÉÏ£©kµÄȡֵ·¶Î§ÊÇ
·ÖÎö£º£¨1£©ÉèÖ±Ïßy=-
x+bÓëCD½»ÓÚµãE£¬ÓëOB½»ÓÚµãF£¬Á¬½ÓA¡äO£¬ÔòOE=b£¬OF=2b£¬ÉèµãA¡äµÄ×ø±êΪ£¨a£¬1£©£¬¸ù¾Ý¡÷DOA¡ä¡×¡÷OFE£¬ËùµÃ
=
£¬¼´
=
£¬ËùÒÔa=
£®¿ÉµÃµãA¡äµÄ×ø±êΪ£¨
£¬1£©£¬Á¬½ÓA¡äE£¬ÔòA¡äE=OE=b£¬¸ù¾Ý¹´¹É¶¨ÀíÓÐA¡äE2=A¡äD2+DE2£¬¼´b2=£¨
£©2+£¨1-b£©2£¬½âµÃb=
£»
£¨2£©ÉèÖ±Ïßy=kx+bÓëOD½»ÓÚµãE£¬ÓëOB½»ÓÚµãF£¬Á¬½ÓA¡äO£¬ÔòOE=b£¬OF=-
£¬ÉèµãA¡äµÄ×ø±êΪ£¨a£¬1£©¿ÉÖ¤¡÷DOA¡ä¡×¡÷OFE£¬ËùÒÔ
=
£¬¼´
=
£¬ËùÒÔa=-k£¬A¡äµãµÄ×ø±êΪ£¨-k£¬1£©£¬Á¬½ÓA¡äE£¬ÔÚRt¡÷DEA¡äÖУ¬DA¡ä=-k£¬DE=1-b£¬A¡äE=b£¬¸ù¾ÝA¡äE2=A¡äD2+DE2£¬µÃb2=£¨-k£©2+£¨1-b£©2£¬ËùÒÔb=
£®
£¨3£©¸ù¾ÝͼÏóºÍ¾ØÐεı߳¤¿ÉÖ±½ÓµÃ³ökµÄȡֵ·¶Î§£¬ÔÚÌâÖÐͼ2ÖУº-2¡Ük¡Ü-1£»Í¼3ÖУº-1¡Ük¡Ü-2+
£»Í¼4ÖУº-2+
¡Ük¡Ü0£®
| 1 |
| 2 |
| DA¡ä |
| OE |
| DO |
| OF |
| a |
| b |
| 1 |
| 2b |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 5 |
| 8 |
£¨2£©ÉèÖ±Ïßy=kx+bÓëOD½»ÓÚµãE£¬ÓëOB½»ÓÚµãF£¬Á¬½ÓA¡äO£¬ÔòOE=b£¬OF=-
| b |
| k |
| DA¡ä |
| OE |
| DO |
| OF |
| a |
| b |
| 1 | ||
-
|
| k2+1 |
| 2 |
£¨3£©¸ù¾ÝͼÏóºÍ¾ØÐεı߳¤¿ÉÖ±½ÓµÃ³ökµÄȡֵ·¶Î§£¬ÔÚÌâÖÐͼ2ÖУº-2¡Ük¡Ü-1£»Í¼3ÖУº-1¡Ük¡Ü-2+
| 3 |
| 3 |
½â´ð£º
½â£º£¨1£©Èçͼ1£¬ÉèÖ±Ïßy=-
x+bÓëCD½»ÓÚµãE£¬ÓëOB½»ÓÚµãF£¬ÓëyÖá½»ÓÚGµã£¬Á¬½ÓA'O£¬ÔòOE=b£¬OF=2b£¬ÉèµãA¡äµÄ×ø±êΪ£¨a£¬1£©£¬
¡ß¡ÏDOA¡ä+¡ÏA¡äOF=90¡ã£¬¡ÏOFE+¡ÏA¡äOF=90¡ã£¬
¡à¡ÏDOA¡ä=¡ÏOFE£¬
¡à¡÷DOA¡ä¡×¡÷OFE£¬
¡à
=
£¬¼´
=
£¬
¡àa=
£¬
¡àµãA¡äµÄ×ø±êΪ£¨
£¬1£©£¬
Á¬½ÓA¡äE£¬ÔòA¡äE=OE=b£¬
ÔÚRt¡÷DEA¡äÖУ¬¸ù¾Ý¹´¹É¶¨ÀíÓÐA¡äE2=A¡äD2+DE2£¬
¼´b2=£¨
£©2+£¨1-b£©2£¬
½âµÃb=
£»
£¨2£©Èçͼ1£¬ÉèÖ±Ïßy=kx+bÓëOD½»ÓÚµãE£¬ÓëOB½»ÓÚµãF£¬Á¬½ÓA'O£¬Ôò£º
OE=b£¬OF=-
£¬
ÉèµãA¡äµÄ×ø±êΪ£¨a£¬1£©£¬
¡ß¡ÏDOA¡ä+¡ÏA¡äOF=90¡ã£¬¡ÏOFE+¡ÏA'OF=90¶È£¬
¡à¡ÏDOA¡ä=¡ÏOFE£¬
¡à¡÷DOA¡ä¡×¡÷OFE£¬
¡à
=
£¬¼´
=
£¬
¡àa=-k£®
¡àA¡äµãµÄ×ø±êΪ£¨-k£¬1£©£®£¨7·Ö£©
Á¬½ÓA¡äE£¬ÔÚRt¡÷DEA¡äÖУ¬DA¡ä=-k£¬DE=1-b£¬A¡äE=b£®
¡ßA¡äE2=A¡äD2+DE2£¬
¡àb2=£¨-k£©2+£¨1-b£©2£¬
¡àb=
£»
£¨3£©ÔÚÌâÖÐͼ2ÖУº-2¡Ük¡Ü-1£»
ͼ3ÖУº-1¡Ük¡Ü-2+
£»
ͼ4ÖУº-2+
¡Ük¡Ü0£®
| 1 |
| 2 |
¡ß¡ÏDOA¡ä+¡ÏA¡äOF=90¡ã£¬¡ÏOFE+¡ÏA¡äOF=90¡ã£¬
¡à¡ÏDOA¡ä=¡ÏOFE£¬
¡à¡÷DOA¡ä¡×¡÷OFE£¬
¡à
| DA¡ä |
| OE |
| OD |
| OF |
| a |
| b |
| 1 |
| 2b |
¡àa=
| 1 |
| 2 |
¡àµãA¡äµÄ×ø±êΪ£¨
| 1 |
| 2 |
Á¬½ÓA¡äE£¬ÔòA¡äE=OE=b£¬
ÔÚRt¡÷DEA¡äÖУ¬¸ù¾Ý¹´¹É¶¨ÀíÓÐA¡äE2=A¡äD2+DE2£¬
¼´b2=£¨
| 1 |
| 2 |
½âµÃb=
| 5 |
| 8 |
£¨2£©Èçͼ1£¬ÉèÖ±Ïßy=kx+bÓëOD½»ÓÚµãE£¬ÓëOB½»ÓÚµãF£¬Á¬½ÓA'O£¬Ôò£º
OE=b£¬OF=-
| b |
| k |
ÉèµãA¡äµÄ×ø±êΪ£¨a£¬1£©£¬
¡ß¡ÏDOA¡ä+¡ÏA¡äOF=90¡ã£¬¡ÏOFE+¡ÏA'OF=90¶È£¬
¡à¡ÏDOA¡ä=¡ÏOFE£¬
¡à¡÷DOA¡ä¡×¡÷OFE£¬
¡à
| DA¡ä |
| OE |
| DO |
| OF |
| a |
| b |
| 1 | ||
-
|
¡àa=-k£®
¡àA¡äµãµÄ×ø±êΪ£¨-k£¬1£©£®£¨7·Ö£©
Á¬½ÓA¡äE£¬ÔÚRt¡÷DEA¡äÖУ¬DA¡ä=-k£¬DE=1-b£¬A¡äE=b£®
¡ßA¡äE2=A¡äD2+DE2£¬
¡àb2=£¨-k£©2+£¨1-b£©2£¬
¡àb=
| k2+1 |
| 2 |
£¨3£©ÔÚÌâÖÐͼ2ÖУº-2¡Ük¡Ü-1£»
ͼ3ÖУº-1¡Ük¡Ü-2+
| 3 |
ͼ4ÖУº-2+
| 3 |
µãÆÀ£ºÕâÊÇÒ»µÀÓйØÕÛµþµÄÎÊÌ⣬Ö÷Òª¿¼²éÒ»´Îº¯Êý¡¢ËıßÐΡ¢ÏàËÆÐεÈ֪ʶ£¬ÊÔÌâÖйᴩÁË·½³Ì˼ÏëºÍÊýÐνáºÏµÄ˼Ï룬Çë×¢ÒâÌå»á£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿