题目内容
【题目】如图,直线AB与CD相交于点O,∠AOC=48°,∠DOE∶∠BOE=5∶3,OF平分∠AOE.
(1)求∠BOE的度数;
(2)求∠DOF的度数.
【答案】(1)30°;(2)51°.
【解析】
(1)根据对顶角相等求出∠BOD的度数,设∠DOE=x,根据题意列出方程,解方程即可;
(2)根据角平分线的定义求出∠AOF的度数即可.
(1)设∠DOE=5x,则∠BOE=3x,
∵∠BOD=∠AOC=48°,
∴5x+3x=48°,
解得,x=6°,
∴∠DOE=30°;
(2)∵∠BOE=3x=18°,
∴∠AOE=180°-∠BOE=162°,
∵OF平分∠AOE,
∴∠AOF=81°,
∴∠DOF=180-∠AOF-∠DOE-∠BOE=180-81-30-18=51°.
【题目】某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.
请根据图表信息回答下列问题:
视力 | 频数(人) | 频率 |
4.0≤x<4.3 | 20 | 0.1 |
4.3≤x<4.6 | 40 | 0.2 |
4.6≤x<4.9 | 70 | 0.35 |
4.9≤x<5.2 | a | 0.3 |
5.2≤x<5.5 | 10 | b |
(1)本次调查的样本为________,样本容量为_______;
(2)在频数分布表中,a=______,b=______,并将频数分布直方图补充完整;
(3)若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?
【题目】如图,在△ABC中,∠C=60°,BC=3厘米,AC=4厘米,点P从点B出发,沿B→C→A以每秒1厘米的速度匀速运动到点A.设点P的运动时间为x秒,B、P两点间的距离为y厘米.
小新根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.
下面是小新的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
x(s) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
y(cm) | 0 | 1.0 | 2.0 | 3.0 | 2.7 | 2.7 | m | 3.6 |
经测量m的值是(保留一位小数).
(2)建立平面直角坐标系,描出表格中所有各对对应值为坐标的点,画出该函数的图象;
(3)结合画出的函数图象,解决问题:在曲线部分的最低点时,在△ABC中画出点P所在的位置.