题目内容
【题目】提出问题:“周长一定的长方形,当邻边长度满足什么条件时面积最大?”
探究发现:如图所示,小敏用4个完全相同的、邻边长度分别为a、b的长方形拼成一个边长为(a+b)的正方形(其中a、b的和不变,但a、b的数值及两者的大小关系都可以变化).仔细观察拼图,我们发现,如果右图中间有空白图形F,那么它一定是正方形
(1)空白图形F的边长为 ;
(2)通过计算左右两个图形的面积,我们发现(a+b)2、(a﹣b)2和ab之间存在一个等量关系式.
①这个关系式是 ;
②已知数x、y满足:x+y=6,xy=,则x﹣y= ;
问题解决:
问题:“周长一定的长方形,当邻边长度满足什么条件时面积最大?”
①对于周长一定的长方形,设周长是20,则长a和宽b的和是 面积S=ab的最大值为 ,此时a、b的关系是 ;
②对于周长为L的长方形,面积的最大值为 .
活动经验:
周长一定的长方形,当邻边长度a、b满足 时面积最大.
【答案】探究发现:(1)a﹣b;(2)①(a+b)2﹣(a﹣b)2=4ab;②5或﹣5;问题解决:①10,25,a=b;②L2;活动经验:a=b.
【解析】
探究发现
(1)由图可知:空白图形F的边长为:a-b;
(2)①由矩形的性质得出左图形的面积为:2a×2b=4ab,由正方形的性质得出右图形的面积为:(a+b)2-(a-b)2,即可得出答案;
②由①得出(x-y)2=25,即可得出答案;
问题解决
①由长方形的性质得出a+b=10,面积S=ab=a(10-a)=-a2+10a=-(a-5)2+25,由二次函数的性质即可得出答案;
②由长方形的性质得出面积;由二次函数的性质即可得出答案;
活动经验
根据前面的问题即可得出结论.
(1)由图可知:空白图形F的边长为:a﹣b,
故答案为:a﹣b;
(2)①左图形的面积为:2a×2b=4ab,
右图形的面积为:(a+b)2﹣(a﹣b)2,
∴(a+b)2﹣(a﹣b)2=4ab,
故答案为:(a+b)2﹣(a﹣b)2=4ab;
②由(a+b)2﹣(a﹣b)2=4ab得:(x+y)2﹣(x﹣y)2=4xy,
即:62﹣(x﹣y)2=4×,
∴(x﹣y)2=25,
∴x﹣y=5或x﹣y=﹣5,
故答案为:5或﹣5;
问题解决:
解:①∵长方形的周长是20,
∴2(a+b)=20,
∴a+b=10,则b=10﹣a,
∴面积S=ab=a(10﹣a)=﹣a2+10a=﹣(a﹣5)2+25,
∴a=5时,S=ab的最大值为25,
此时a、b的关系是a=b,
故答案为:10,25,a=b;
②对于周长为L的长方形,
设一边长为a,则邻边长为﹣a,
∴面积;
∴面积的最大值为L2;
故答案为:L2;
活动经验:
解:周长一定的长方形,当邻边长度a、b满足a=b时面积最大;
故答案为:a=b.