题目内容

【题目】如图,点O为矩形ABCD的对称中心,AB=10cm,BC=12cm,点E、F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E、F、G运动的时间为t(单位:s).

(1)当t=s时,四边形EBFB′为正方形;
(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;
(3)是否存在实数t,使得点B′与点O重合?若存在,求出t的值;若不存在,请说明理由.

【答案】
(1)2.5
(2)

解:分两种情况,讨论如下:

①若△EBF∽△FCG,

则有 ,即

解得:t=2.8;

②若△EBF∽△GCF,

则有 ,即

解得:t=﹣14﹣2 (不合题意,舍去)或t=﹣14+2

∴当t=2.8s或t=(﹣14+2 )s时,以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似


(3)

解:假设存在实数t,使得点B′与点O重合.

如图,过点O作OM⊥BC于点M,则在Rt△OFM中,OF=BF=3t,FM= BC﹣BF=6﹣3t,OM=5,

由勾股定理得:OM2+FM2=OF2

即:52+(6﹣3t)2=(3t)2

解得:t=

过点O作ON⊥AB于点N,则在Rt△OEN中,OE=BE=10﹣t,EN=BE﹣BN=10﹣t﹣5=5﹣t,ON=6,

由勾股定理得:ON2+EN2=OE2

即:62+(5﹣t)2=(10﹣t)2

解得:t=3.9.

≠3.9,

∴不存在实数t,使得点B′与点O重合


【解析】解:(1)若四边形EBFB′为正方形,则BE=BF,BE=10﹣t,BF=3t,
即:10﹣t=3t,解得t=2.5;(1)利用正方形的性质,得到BE=BF,列一元一次方程求解即可;(2)△EBF与△FCG相似,分两种情况,需要分类讨论,逐一分析计算;(3)本问为存在型问题.假设存在,则可以分别求出在不同条件下的t值,它们互相矛盾,所以不存在.
【考点精析】通过灵活运用相似三角形的应用,掌握测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网