题目内容
【题目】如图,在ABCD中,过对角线BD上点P作直线EF,GH分别平行于AB,BC,那么图中共有( )对面积相等平行四边形.
A. 1对B. 2对C. 3对D. 4对
【答案】C
【解析】
平行四边形的对角线将平行四边形分成两个面积相等的三角形.所以三角形ABD的面积等于三角形BCD的面积.三角形BFP的面积等于BGP的面积,三角形PED的面积等于三角形HPD的面积,从而可得到四边形PFCH的面积等于四边形AGPE的面积,同时加上一个公共的平行四边形,可以得出答案有三个.
∵ABCD为平行四边形,BD为对角线,∴△ABD的面积等于△BCD的面积,同理△BFP的面积等于△BGP的面积,△PED的面积等于△HPD的面积.
∵△BCD的面积减去△BFP的面积和PHD的面积等于平行四边形PFCH的面积,△ABD的面积减去△GBD和△EPD的面积等于平行四边形AGPE的面积,∴平行四边形PFCH的面积=平行四边形AGPE的面积,∴同时加上平行四边形PHDE和BFPG,可以得出平行四边形AGHD面积和平行四边形EFCD面积相等,平行四边形ABFE和平行四边形BCHG面积相等.
所以有3对面积相等的平行四边形.
故选C.
练习册系列答案
相关题目