题目内容
【题目】小军同学在学校组织的社会实践活动中,负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:x),并绘制了样本的频数分布表如下:
月均用水量 | 2≤x<3 | 3≤x<4 | 4≤x<5 | 5≤x<6 | 6≤x<7 | 7≤x<8 | 8≤x<9 |
频数 | 2 | 12 | ① | 10 | ② | 3 | 2 |
百分比 | 4% | 24% | 30% | 20% | ③ | 6% | 4% |
(1)请根据题中已有的信息补全频数分布表:① ;② ;③
(2)如果家庭月均用水量在5≤x<8范围内为中等用水量家庭,请你通过样本估计,总体中的中等用水量家庭大约有多少户?
(3)记月均用水量在2≤x<3范围内的两户为a1,a2,在8≤x<9范围内的2户为b1,b2,现从这4户家庭中任意抽取2户,请你通过列表或画树状图求出抽取的2户家庭来自不同范围的概率.
【答案】(1)15,6,12%;(2)171户;(3)见解析,
【解析】
(1)根据频数的相关知识列式计算即可.
(2)用总体乘以样本中中等用水量家庭的百分比即可;
(3)在2≤x<3范围的两户用表示,8≤x<9这两个范围内的两户用,表示,利用树状图法表示出所有可能的结果,然后利用概率公式求解即可.
(1)①50×30%=15;
②50﹣2﹣12﹣15﹣10﹣3﹣2=6;
③6÷50=0.12=12%
故答案为:15,6,12%
(2)中等用水量家庭大约有450×(20%+12%+6%)=171(户)
(3)在2≤x<3范围的两户用表示,8≤x<9这两个范围内的两户用,表示,
画树状图:
共有12种等可能的结果数,其中抽取的2个家庭来自不同用水范围的结果数为8,
抽取出的2户家庭来自不同范围的概率:P==.
【题目】某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.
a. 实心球成绩的频数分布表如下:
分组 | ||||||
频数 | 2 | m | 10 | 6 | 2 | 1 |
b. 实心球成绩在这一组的是:
a7.0 7.0 7.0 7.1 7.1 7.1 7.2 7.2 7.3 7.3
c. 一分钟仰卧起坐成绩如下图所示:
根据以上信息,回答下列问题:
(1) ①表中m的值为__________;
②一分钟仰卧起坐成绩的中位数为__________;
(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.
①请估计全年级女生实心球成绩达到优秀的人数;
②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如下:
女生代码 | A | B | C | D | E | F | G | H |
实心球 | 8.1 | 7.7 | 7.5 | 7.5 | 7.3 | 7.2 | 7.0 | 6.5 |
一分钟仰卧起坐 | * | 42 | 47 | * | 47 | 52 | * | 49 |
其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.