题目内容

已知:如图,在正方形ABCD中,AB=4,E为边BC延长线上一点,连接DE,BF⊥DE,垂足为点F,BF与边CD交于点G,连接EG.设CE=x.
(1)求∠CEG的度数;
(2)当BG=2
5
时,求△AEG的面积;
(3)如果AM⊥BF,AM与BC相交于点M,四边形AMCD的面积为y,求y关于x的函数解析式,并写出它的定义域.
分析:(1)利用正方形的性质证明△BCG≌△DCE,得出GC=EC,进而求出∠CEG的度数;
(2)利用勾股定理求出CG的长,再利用S△AEG=S四边形ABED-S△ABE-S△ADG-S△DEG,进而求出△AEG的面积;
(3)由AM⊥BF,BF⊥DE,易得AM∥DE,于是,由AD∥BC,可知四边形AMED是平行四边形,利用梯形的面积公式可得求y关于x的函数解析式.
解答:解:(1)∵四边形ABCD是正方形,
∴BC=CD,∠BCD=∠DCE=90°.             
∵BF⊥DE,
∴∠GFD=90°,
∴∠GBC+∠DGF=90°,∠CDF+∠DGF=90°,
∴∠GBC=∠CDE,
∵∠BGC+∠GBC=90°,∠CDE+∠DEC=90°
∴∠BGC=∠DEC,
在△BCG和△DCE中,
∠GBC=∠EDC
BC=DC
∠BGC=∠EDC

∴△BCG≌△DCE(ASA).                             
∴GC=EC,即∠CEG=45°.                                        

(2)在Rt△BCG中,BC=4,BG=2
5

利用勾股定理,得CG=2.
∴CE=2,DG=2,即得  BE=6.                                
∴S△AEG=S四边形ABED-S△ABE-S△ADG-S△DEG
=
1
2
(4+6)×4-
1
2
×6×4-
1
2
×2×4-
1
2
×2×2

=2.                 

(3)由AM⊥BF,BF⊥DE,易得AM∥DE.
于是,由AD∥BC,可知四边形AMED是平行四边形.
∴AD=ME=4.
由CE=x,得MC=4-x.
y=S梯形AMCD=
1
2
(AD+MC)•CD=
1
2
(4+4-x)×4=-2x+16

即y=-2x+16,定义域为0<x<4.
点评:本题考查了正方形的性质,全等三角形的判定以及性质三角形和梯形的面积公式,考查面很广,综合性较强.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网