题目内容
【题目】如图,点E在△ABC外部,点D在边BC上,DE交AC于点F.若∠1=∠2=∠3,AC=AE,求证△ABC≌△ADE.
【答案】证明过程见解析
【解析】试题分析:要想证明△ABC≌△ADE,全等的条件,∵∠1=∠2=∠3,
∴∠2+∠DAC=∠1+∠DAC,∴∠BAC=∠DAE,又∵∠DFC=∠AFE,∠3=∠1,
∴在△ADE和△ABC中,由三角形的内角和定理得∠3+∠C+∠DFC=∠1+∠E+∠AFE,
∵∠DFC=∠AFE,∴∠C=∠E,又已知AD=AB,∴△ABC≌△ADE(AAS)
试题解析: (1)由三角形的内角和定理△AEF与△DCF中,
∵∠2=∠3,∠AFE=∠CFD, ∴∠C=∠E;∵∠1=∠2, ∠BAC=∠1+∠DAC,
∠DAE=∠2+∠DAC ∴∠BAC=∠DAE 又∵AC=AE, ∴△ABC≌△ADE(ASA)
练习册系列答案
相关题目
【题目】为了让市民树立起“珍惜水、节约水、保护水”的用水理念,某市从今年4月起,居民生活用水按阶梯式计算水价,水价计算方式如下表所示,每吨水还需另加污水处理费0.80元.已知小张家今年4月份用水20吨,交水费49元;5月份用水25吨,交水费65.4元.(友情提示:水费=水价+污水处理费)
用水量 | 水价(元/吨) |
不超过20吨 | m |
超过20吨且不超过30吨的部分 | n |
超过30吨的部分 | 2m |
(1)求m、n的值;
(2)随着夏天的到来,用水量将激增.为了节省开支,小张计划把6月份的水费控制在不超过家庭月收入的2%.若小张家的月收入为8190元,则小张家6月份最多能用水多少吨?