题目内容
【题目】已知△ABC,以AC为边在△ABC外作等腰△ACD,其中AC=AD.
(1)如图1,若AB为边在△ABC外作△ABE,AB=AE,∠DAC=∠EAB=60°,求∠BFC的度数;
(2)如图2,∠ABC=α,∠ACD=β,BC=4,BD=6.
①若α=30°,β=60°,AB的长为 ;
②若改变α、β的大小,且α+β=90°,求△ABC的面积.
【答案】(1)∠BFC=120°;(2)①2;(3)S△ABC=BCAH=2.
【解析】
(1)根据SAS,可首先证明△AEC≌△ABD,再利用全等三角形的性质,可得对应角相等,根据三角形的外角的定理,可求出∠BFC的度数;
(2)①在△ABC外作等边△BAE,连接CE,证明△EAC≌△BAD,可证∠EBC=90°,EC=BD=6,在Rt△BCE中,由勾股定理求BE即可;
②过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE的中点K,连接AK,证明△EAC≌△BAD,求得EC=DB,利用勾股定理即可得出结论.
(1)∵∠EAB=∠DAC=60°,
∴∠EAB+∠BAC=∠DAC+∠BAC,
∴∠EAC=∠DAB,
在△AEC和△ABD中,
,
∴△AEC≌△ABD(SAS),
∴∠AEC=∠ABD,
∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE,
∴∠BFC=∠AEB+∠ABE=120°;
(2)①如图2,以AB为边在△ABC外作正三角形ABE,连接CE.
由(1)可知△EAC≌△BAD.
∴EC=BD.
∴EC=BD=6,
∵∠BAE=60°,∠ABC=30°,
∴∠EBC=90°.
在Rt△EBC中,EC=6,BC=4,
∴EB= ,
∴AB=BE=;
故答案为:.
②如图2,作AH⊥BC交BC于H,过点B作BE∥AH,并在BE上取BE=2AH,连接EA,EC.并取BE的中点K,连接AK.
∵AH⊥BC于H,
∴∠AHC=90°.
∵K为BE的中点,BE=2AH,
∴BK=AH.
∵BK∥AH,
∴四边形AKBH为平行四边形.
又∵∠AHC=90°,
∴四边形AKBH为矩形.
∴∠AKB=90°,∠ABE=∠ACD,
∴AK是BE的垂直平分线.
∴AB=AE.
∵AB=AE,AC=AD,∠ABE=∠ACD,
∴∠EAB=∠DAC,
∴∠EAB+∠BAC=∠DAC+∠BAC,
即∠EAC=∠BAD,
在△EAC与△BAD中,
∴△EAC≌△BAD(SAS).
∴EC=BD=6.
在Rt△BCE中,BE=,
∴AH=BE=,
∴S△ABC=BCAH=2.