题目内容
【题目】如图,△ABC是边长为4cm的等边三角形,动点P从点A出发,以2cm/s的速度沿A→C→B运动,到达B点即停止运动,过点P作PD⊥AB于点D,设运动时间为x(s),△ADP的面积为y(cm2),则能够反映y与x之间函数关系的图象大致是( )
A. B. C. D.
【答案】B
【解析】过点P作PD⊥AB于点D,△ABC是边长为4cm的等边三角形,
则AP=2x,
当点P从A→C的过程中,AD=x,PD=x,如图1所示,
则y=ADPD= =,(0≤x≤2),
当点P从C→B的过程中,BD=(8﹣2x)×=4﹣x,PD=(4﹣x),PC=2x﹣4,如图2所示,
则△ABC边上的高是:ACsin60°=4×=2,
∴y=S△ABC﹣S△ACP﹣S△BDP
= (2<x≤4),
故选B.
练习册系列答案
相关题目