题目内容

【题目】在长方形纸片ABCD中,AB=mAD=n,将两张边长分别为64的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2

1)在图1中,EF= BF= ;(用含m的式子表示)

2)请用含mn的式子表示图1,图2中的s1s2,若m-n=2,请问S2-S1的值为多少?

【答案】(1)EF=10-m BF= m-6;(2)8.

【解析】

(1)根据AF+BE-EF=AB可表示出EF的长,根据BF=BE-EF可表示出BF的长;

(2)先利用割补法分别表示出S1S2的值,再相减,然后把m-n=2代入化简后的结果计算即可.

(1)∵AF+BE-EF=AB,

∴6+4-EF=m,

EF=10-m,

BF=BE-EF=4-(10-m)=m-6;

(2)∵S1=6(n-6)+(m-6)(n-4)=mn-4m-12,

S2=6(m-6)+(m-4)(n-6)=mn-4n-12,

S2-S1=( mn-4n-12)-( mn-4m-12)=4m-4n=4(m-n).

m-n=2,

S2-S1=4(m-n)=8.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网