题目内容
【题目】在长方形纸片ABCD中,AB=m,AD=n,将两张边长分别为6和4的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.
(1)在图1中,EF= ,BF= ;(用含m的式子表示)
(2)请用含m、n的式子表示图1,图2中的s1,s2,若m-n=2,请问S2-S1的值为多少?
【答案】(1)EF=10-m, BF= m-6;(2)8.
【解析】
(1)根据AF+BE-EF=AB可表示出EF的长,根据BF=BE-EF可表示出BF的长;
(2)先利用割补法分别表示出S1和S2的值,再相减,然后把m-n=2代入化简后的结果计算即可.
(1)∵AF+BE-EF=AB,
∴6+4-EF=m,
∴EF=10-m,
∴BF=BE-EF=4-(10-m)=m-6;
(2)∵S1=6(n-6)+(m-6)(n-4)=mn-4m-12,
S2=6(m-6)+(m-4)(n-6)=mn-4n-12,
∴S2-S1=( mn-4n-12)-( mn-4m-12)=4m-4n=4(m-n).
∵m-n=2,
∴S2-S1=4(m-n)=8.
【题目】甲、乙两超市(大型商场)同时开业,为了吸引顾客,都举行有奖酬宾活动:凡购物满100元,均可得到一次摸奖的机会.在一个纸盒里装有2个红球和2个白球,除颜色外其它都相同,摸奖者一次从中摸出两个球,根据球的颜色决定送礼金券(在他们超市使用时,与人民币等值)的多少.(如下表) 甲超市:
球 | 两红 | 一红一白 | 两白 |
礼金券(元) | 5 | 10 | 5 |
乙超市:
球 | 两红 | 一红一白 | 两白 |
礼金券(元) | 10 | 5 | 10 |
(1)用树状图表示得到一次摸奖机会时中礼金券的所有情况;
(2)如果只考虑中奖因素,你将会选择去哪个超市购物?请说明理由.