题目内容
【题目】已知⊙O中,弦AB=AC,点P是∠BAC所对弧上一动点,连接PA,PB.
(1)如图①,把△ABP绕点A逆时针旋转到△ACQ,连接PC,求证:∠ACP+∠ACQ=180°;
(2)如图②,若∠BAC=60°,试探究PA、PB、PC之间的关系.
(3)若∠BAC=120°时,(2)中的结论是否成立?若是,请证明;若不是,请直接写出它们之间的数量关系,不需证明.
【答案】(1)证明见解析;(2)PA=PB+PC.理由见解析;(3)若∠BAC=120°时,(2)中的结论不成立, PA=PB+PC.
【解析】试题分析:(1)如图①,连接PC.根据“内接四边形的对角互补的性质”即可证得结论;
(2)如图②,通过作辅助线BC、PE、CE(连接BC,延长BP至E,使PE=PC,连接CE)构建等边△PCE和全等三角形△BEC≌△APC;然后利用全等三角形的对应边相等和线段间的和差关系可以求得PA=PB+PC;
(3)如图③,在线段PC上截取PQ,使PQ=PB,过点A作AG⊥PC于点G.利用全等三角形△ABP≌△AQP(SAS)的对应边相等推知AB=AQ,PB=PG,将PA、PB、PC的数量关系转化到△APC中来求即可.
试题解析:(1)如图①,连接PC.
∵△ACQ是由△ABP绕点A逆时针旋转得到的,
∴∠ABP=∠ACQ.
由图①知,点A、B、P、C四点共圆,
∴∠ACP+∠ABP=180°(圆内接四边形的对角互补),
∴∠ACP+∠ACQ=180°(等量代换);
(2)PA=PB+PC.理由如下:
如图②,连接BC,延长BP至E,使PE=PC,连接CE.
∵弦AB=弦AC,∠BAC=60°,
∴△ABC是等边三角形(有一内角为60°的等腰三角形是等边三角形).
∵A、B、P、C四点共圆,∴∠BAC+∠BPC=180°(圆内接四边形的对角互补),
∵∠BPC+∠EPC=180°,∴∠BAC=∠CPE=60°,
∵PE=PC,∴△PCE是等边三角形,∴CE=PC,∠E=∠ECP=∠EPC=60°;
又∵∠BCE=60°+∠BCP,∠ACP=60°+∠BCP,∴∠BCE=∠ACP(等量代换),
在△BEC和△APC中, ,∴△BEC≌△APC(SAS),∴BE=PA,
∴PA=BE=PB+PC;
(3)若∠BAC=120°时,(2)中的结论不成立, PA=PB+PC.理由如下:
如图③,在线段PC上截取PQ,使PQ=PB,过点A作AG⊥PC于点G.
∵∠BAC=120°,∠BAC+∠BPC=180°,∴∠BPC=60°.
∵弦AB=弦AC,∴∠APB=∠APQ=30°.
在△ABP和△AQP中, ,∴△ABP≌△AQP(SAS),
∴AB=AQ,PB=PQ(全等三角形的对应边相等),∴AQ=AC(等量代换).
在等腰△AQC中,QG=CG.
在Rt△APG中,∠APG=30°,则AP=2AG,PG=AG,
∴PB+PC=PG﹣QG+PG+CG=PG﹣QG+PG+QG=2PG=2AG,
∴PA=2AG,即PA=PB+PC.