题目内容
【题目】如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.
(1)求一次函数和反比例函数的解析式;
(2)观察图象,直接写出方程kx+b﹣=0的解;
(3)求△AOB的面积;
(4)观察图象,直接写出不等式kx+b﹣<0的解集.
【答案】(1)反比例函数的解析式为y=﹣,一次函数的解析式为y=﹣x﹣2;(2)x1=﹣4,x2=2;(3)6;(4)﹣4<x<0或x>2
【解析】
(1)把B(2,-4)代入反比例函数y=得出m的值,再把A(-4,n)代入一次函数的解析式y=kx+b,运用待定系数法求其解析式;
(2)经过观察可发现所求方程的解应为所给函数的两个交点的横坐标;
(3)先求出直线y=-x-2与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;
(4)观察函数图象得到当﹣4<x<0或x>2时,一次函数的图象在反比例函数图象下方,即使kx+b-<0.
解:(1)∵B(2,﹣4)在y=上,
∴m=﹣8.
∴反比例函数的解析式为y=﹣.
∵点A(﹣4,n)在y=﹣上,
∴n=2.
∴A(﹣4,2).
∵y=kx+b经过A(﹣4,2),B(2,﹣4),
∴.
解得:.
∴一次函数的解析式为y=﹣x﹣2.
(2)∵A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=的图象的两个交点,
∴方程kx+b﹣=0的解是x1=﹣4,x2=2.
(3)∵当y=0时,x=﹣2.
∴点C(﹣2,0).
∴OC=2.
∴S△AOB=S△ACO+S△BCO=×2×4+×2×2=6;
(4)∵当﹣4<x<0或x>2时,一次函数的图象在反比例函数图象下方
∴不等式kx+b﹣<0的解集为﹣4<x<0或x>2.
练习册系列答案
相关题目