题目内容
已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.
(1)直线BF垂直于直线CE,交CE于点F,交CD于点G(如图①),求证:AE=CG;
(2)直线AH垂直于直线CE,交CE的延长线于点H,交CD的延长线于点M(如图②),找出图中与BE相等的线段,并证明.
见解析
【解析】⑴证明:设∠ACE=∠1,因为直线BF垂直于CE,交CE于点F,所以∠CFB=90°,
所以∠ECB+∠CBF=90°.
又因为∠1+∠ECB=90°,所以∠1=∠CBF .
因为AC=BC, ∠ACB=90°,所以∠A=∠CBA=45°.
又因为点D是AB的中点,所以∠DCB=45°.
因为∠1=∠CBF,∠DCB=∠A,AC=BC,所以△CAE≌△BCG,所以AE=CG.
(2)【解析】
CM=BE.证明如下:因为∠ACB=90°,所以∠ACH +∠BCF=90°.
因为 CH⊥AM,即∠CHA=90°,所以 ∠ACH +∠CAH=90°,所以∠BCF=∠CAH.
因为 CD为等腰直角三角形斜边上的中线,所以 CD=AD.所以∠ACD=45°.
在△CAM与△BCE中,CA=BC,∠CAH =∠BCF, ∠ACM =∠CBE,
所以 △CAM ≌△BCE,所以CM=BE.
练习册系列答案
相关题目
某公司员工的月工资如下表:
员工 | 经理 | 副经理 | 职员 | 职员 | 职员 | 职员 | 职员 | 职员 | 职员 |
月工资/元 | 4 800 | 3 500 | 2 000 | 1 900 | 1 800 | 1 600 | 1 600 | 1 600 | 1 000 |
则这组数据的平均数,众数,中位数分别为( )
A. B.
C. D.