题目内容

【题目】如图,在四边形ABCD中,ADBC,DEBC,垂足为点E,连接ACDE于点F,点GAF的中点,∠ACD=2ACB.若AF=50,EC=7,则DE的长为(

A. 14 B. 21 C. 24 D. 25

【答案】C

【解析】

根据直角三角形斜边上的中线的性质可得DG=AF,根据等腰三角形的性质可得∠GAD=∠GDA,根据三角形外角的性质可得∠CGD=2∠GAD,再根据平行线的性质和等量关系可得∠ACD=∠CGD,根据等腰三角形的性质可得CD=DG,再根据勾股定理即可求解.

解:∵AD∥BC,DE⊥BC,
∴DE⊥AD,∠CAD=∠ACB,∠ADE=∠BED=90°,
又∵点GAF的中点,
∴DG=AF=25,
∴∠GAD=∠GDA,
∴∠CGD=2∠CAD,
∵∠ACD=2∠ACB=2∠CAD,
∴∠ACD=∠CGD,
∴CD=DG=25,

RtCED中,DE== =24.

故选:C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网