题目内容
【题目】如图,半径为2的圆被分成甲、乙、丙三个扇形,它们的面积之比为3:2:5.请回答下列问题.
(1)扇形甲的圆心角为 ;
(2)剪下扇形丙恰好能围成一个几何体的侧面,这个几何体的名称是 .
(3)现有半径分别为1,2,3的三个圆形纸片,从中选择一个恰好和扇形丙组成(2)中的几何体(不考虑接缝的大小),求这个几何体的表面积.
【答案】(1)108°;(2)圆锥;(3)3π.
【解析】
(1)根据扇形的面积比等于圆心角之比,求出各个扇形的圆心角占整个圆的几分之几,进而确定出各个扇形的圆心角;
(2)根据圆锥的侧面展开图形为扇形,进行解答便可;
(3)由圆锥侧面展开图扇形的弧长与圆锥底面圆周长相等,便可选择底面圆,根据圆锥表面积公式进行计算.
解:(1)360°×=108°,
故答案为:108°;
(2)∵一个扇形可以转成一个圆锥的侧面,
∴剪下扇形丙恰好能围成一个几何体的侧面,这个几何体的名称是圆锥,
故答案为:圆锥;
(3)扇形丙的圆心角为:360°×,
设剪下扇形丙能围成圆锥的底面圆的半径为x,根据题意得,
2πx=,
∴x=1,
∴选择半径为1的圆形纸片恰好和扇形丙组成(2)中的几何体;
该几何体的表面积为:.
练习册系列答案
相关题目
【题目】已知:p为实数.
p | k | q |
… | … | … |
3 | 16×3+26 | 2×2×6 |
4 | 16×4+26 | 2×3×7 |
5 | 16×5+26 | 2×4×8 |
6 | 16×6+26 | 2×5×9 |
7 | 16×7+26 | 2×6×10 |
… | … | … |
根据上表中的规律,回答下列问题:
(1)当p为何值时,k=38?
(2)当p为何值时,k与q的值相等?