题目内容

【题目】如图,在ABCD中,点E,F在对角线AC上,且AE=CF.求证:
(1)DE=BF;
(2)四边形DEBF是平行四边形.

【答案】
(1)证明:∵四边形ABCD是平行四边形,

∴AD∥CB,AD=CB,

∴∠DAE=∠BCF,

在△ADE和△CBF中,

∴△ADE≌△CBF,

∴DE=BF


(2)证明:由(1),可得△ADE≌△CBF,

∴∠ADE=∠CBF,

∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,

∴∠DEF=∠BFE,

∴DE∥BF,

又∵DE=BF,

∴四边形DEBF是平行四边形


【解析】(1)根据全等三角形的判定方法,判断出△ADE≌△CBF,即可推得DE=BF.(2)首先判断出DE∥BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可.
【考点精析】本题主要考查了平行四边形的判定与性质的相关知识点,需要掌握若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网