题目内容
【题目】阅读以下材料:
对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.
对数的定义:一般地,若ax=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=logaN.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25.
我们根据对数的定义可得到对数的一个性质:loga(MN)=logaM+logaN(a>0,a≠1,M>0,N>0);理由如下:
设logaM=m,logaN=n,则M=am,N=an
∴MN=aman=am+n,由对数的定义得m+n=loga(MN)
又∵m+n=logaM+logaN
∴loga(MN)=logaM+logaN
解决以下问题:
(1)将指数43=64转化为对数式_____;
(2)证明loga=logaM﹣logaN(a>0,a≠1,M>0,N>0)
(3)拓展运用:计算log32+log36﹣log34=_____.
【答案】(1)3=log464;(2)证明见解析;(3)1.
【解析】
(1)根据题意可以把指数式43=64写成对数式;
(2)先设logaM=m,logaN=n,根据对数的定义可表示为指数式为:M=am,N=an,计算的结果,同理由所给材料的证明过程可得结论;
(3)由题意和(2)可得,将所求式子表示为:log3(2×6÷4),然后计算可得结果.
(1)由题意可得,指数式43=64写成对数式为:3=log464,
故答案为:3=log464;
(2)设logaM=m,logaN=n,则M=am,N=an,
∴==am﹣n,由对数的定义得m﹣n=loga,
又∵m﹣n=logaM﹣logaN,
∴loga=logaM﹣logaN(a>0,a≠1,M>0,N>0);
(3)log32+log36﹣log34,
=log3(2×6÷4),
=log33,
=1,
故答案为:1.
【题目】2022年将在北京﹣﹣张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市,某校开设了冰球选修课,12名同学被分成甲、乙两组进行训练,他们的身高(单位:cm)如表所示:
队员1 | 队员2 | 队员3 | 队员4 | 队员5 | 队员6 | |
甲组 | 176 | 177 | 175 | 176 | 177 | 175 |
乙组 | 178 | 175 | 170 | 174 | 183 | 176 |
设两队队员身高的平均数依次为 甲 , 乙 , 方差依次为S甲2 , S乙2 , 下列关系中正确的是( )
A. 甲= 乙 , S甲2<S乙2
B. 甲= 乙,S甲2>S乙2
C. 甲< 乙 , S甲2<S乙2
D. 甲> 乙 , S甲2>S乙2