题目内容
【题目】为了测量一条两岸平行的河流宽度,三个数学研究小组设计了不同的方案,他们在河南岸的点A处测得河北岸的树H恰好在A的正北方向.测量方案与数据如下表:
课题 | 测量河流宽度 | ||
测量工具 | 测量角度的仪器,皮尺等 | ||
测量小组 | 第一小组 | 第二小组 | 第三小组 |
测量方案示意图 | |||
说明 | 点B,C在点A的正东方向 | 点B,D在点A的正东方向 | 点B在点A的正东方向,点C在点A的正西方向. |
测量数据 | BC=60m, ∠ABH=70°, ∠ACH=35°. | BD=20m, ∠ABH=70°, ∠BCD=35°. | BC=101m, ∠ABH=70°, ∠ACH=35°. |
(1)哪个小组的数据无法计算出河宽?
(2)请选择其中一个方案及其数据求出河宽(精确到0.1m).(参考数据:sin70°≈0.94,sin35°≈0.57,tan70°≈2.75,tan35°≈0.70)
【答案】(1)第二个小组的数据无法计算河宽;(2)河宽为56.4m
【解析】
(1)第二个小组的数据无法计算出河宽;
(2)第一个小组:证明BC=BH=60m,解直角三角形求出AH即可.
第三个小组:设AH=xm,则CA=,AB=,根据CA+AB=CB,构建方程求解即可.
解:(1)第二个小组的数据无法计算河宽;
(2)第一个小组的解法:
∵∠ABH=∠ACH+∠BHC,∠ABH=70°,∠ACH=35°,
∴∠BHC=∠BCH=35°,
∴BC=BH=60m,
∴AH=BHsin70°=60×0.94≈56.4(m).
第三个小组的解法:
设AH=xm,则CA=,AB=,
∵CA+AB=CB,
∴=101,
解得x≈56.4.
答:河宽为56.4m.
【题目】某市在九年级“线上教学”结束后,为了解学生的视力情况,抽查了部分学生进行视力检测.根据检测结果,制成下面不完整的统计图表.
被抽样的学生视力情况频数表
组别 | 视力段 | 频数 |
A | 5.1≤x≤5.3 | 25 |
B | 4.8≤x≤5.0 | 115 |
C | 4.4≤x≤4.7 | m |
D | 4.0≤x≤4.3 | 52 |
(1)求组别C的频数m的值.
(2)求组别A的圆心角度数.
(3)如果视力值4.8及以上属于“视力良好”,请估计该市25000名九年级学生达到“视力良好”的人数.根据上述图表信息,你对视力保护有什么建议?