搜索
题目内容
在锐角△ABC中,∠A,∠B,∠C的对边分别是a,b,c.如图所示,过C作CD⊥AB于D,则co
sA=
,
即AD=bcosA.
∴BD=c-AD=c-bcosA
在Rt△ADC和Rt△BDC中有CD
2
=AC
2
-AD
2
=BC
2
-BD
2
∴b
2
-b
2
cos
2
A=a
2
-(c-bcosA)
2
整理得:a
2
=b
2
+c
2
-2bccosA
同理可得:b
2
=a
2
+c
2
-2accosB
c
2
=a
2
+b
2
-2abcosC
这个结论就是著名的余弦定理,在以上三个等式中有六个元素a,b,c,∠A,∠B,∠C,若已知其中的任意三个元素,可求出其余的另外三个元素.
如:在锐角△ABC中,已知∠A=60°,b=3,c=6,
则由(1)式可得:a
2
=3
2
+6
2
-2×3×6cos60°=27
∴a=3
,∠B,∠C则可由式子(2)、(3)分别求出,在此略.
根据以上阅读理解,请你试着解决如下问题:
已知锐角△ABC的三边a,b,c分别是7,8,9,求∠A,∠B,∠C的度数.(保留整数)
试题答案
相关练习册答案
解:由(1)得:7
2
=8
2
+9
2
-2×8×9cosA
则cosA=
,∠A≈48°
由(2)得:8
2
=9
2
+7
2
-2×9×7cosB
则cosB=
,∠B≈58°
∴∠C=180°-∠A-∠B=74°.
分析:此题只要把三边代入余弦定理即可求出三角的余弦值,从而求出三角.
点评:代入法是数学中常用的一种方法,学生一定要牢固掌握.
练习册系列答案
课课练与单元测试系列答案
世纪金榜小博士单元期末一卷通系列答案
单元测试AB卷台海出版社系列答案
黄冈新思维培优考王单元加期末卷系列答案
名校名师夺冠金卷系列答案
小学英语课时练系列答案
培优新帮手系列答案
天天向上一本好卷系列答案
小学生10分钟应用题系列答案
课堂作业广西教育出版社系列答案
相关题目
在锐角△ABC中,a、b、c分别表示为∠A、∠B、∠C的对边,O为其外心,则O点到三边的距离之比为( )
A、a:b:c
B、
1
a
:
1
b
:
1
c
C、cosA:cosB:cosC
D、sinA:sinB:sinC
在锐角△ABC中,最大的高线AH等于中线BM,求证:∠B<60°(如图).
如图,在锐角△ABC中,∠BAC=60°,BD、CE为高,F为BC的中点,连接DE、DF、EF,则结论:①B、E、D、C四点共圆;②AD•AC=AE•AB;③△DEF是等边三角形;④当∠ABC=45°时,BE=
2
DE中,一定正确的有( )
A.4个
B.3个
C.2个
D.1个
(2013•南开区一模)在锐角△ABC中,∠BAC=60°,BD、CE为高,F是BC的中点,连接DE、EF、FD,则以下结论中一定正确的个数有( )
①EF=FD;②AD:AB=AE:AC;③△DEF是等边三角形.
A.0个
B.1个
C.2个
D.3个
在锐角△ABC中,已知
cosA-
1
2
+|tanB-
3
|=0
,且AB=4,则△ABC的面积等于( )
A.4
B.2
C.
2
3
D.
4
3
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总