题目内容
【题目】如图,平面直角坐标系中,A(8,0),B(0,6),∠BAO,∠ABO的平分线相交于点C,过点C作CD∥x轴交AB于点D,则点D的坐标为( )
A.( ,2)B.( ,1)C.( ,2)D.(,1)
【答案】A
【解析】
延长DC交y轴于F,过C作CG⊥OA于G,CE⊥AB于E,根据角平分线的性质得到FC=CG=CE,求得DH=CG=CF,设DH=3x,AH=4x,根据勾股定理得到AD=5x,根据平行线的性质得到∠DCA=∠CAG,求得∠DCA=∠DAC,得到CD=HG=AD=5x,列方程即可得到结论.
解:延长DC交y轴于F,过C作CG⊥OA于G,CE⊥AB于E,
∵CD∥x轴,
∴DF⊥OB,
∵∠BAO,∠ABO的平分线相交于点C,
∴FC=CG=CE,
∴DH=CG=CF,
∵A(8,0),B(0,6),
∴OA=8,OB=6,
∴tan∠OAB===,
∴设DH=3x,AH=4x,
∴AD=5x,
∵CD∥OA,
∴∠DCA=∠CAG,
∵∠DAC=∠GAC,
∴∠DCA=∠DAC,
∴CD=HG=AD=5x,
∴3x+5x+4x=8,
∴x=,
∴DH=2,OH=,
∴D(,2),
故选:A.
【题目】为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.
学生立定跳远测试成绩的频数分布表
分组 | 频数 |
1.2≤x<1.6 | a |
1.6≤x<2.0 | 12 |
2.0≤x<2.4 | b |
2.4≤x<2.8 | 10 |
请根据图表中所提供的信息,完成下列问题:
(1)表中a= ,b= ,样本成绩的中位数落在 范围内;
(2)请把频数分布直方图补充完整;
(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有多少人?