题目内容

对于实数u,v,定义一种运算“*”为:u*v=uv+v.若关于x的方程x*(a*x)=-
14
有两个不同的实数根,则满足条件的实数a的取值范围是
 
分析:由于定义一种运算“*”为:u*v=uv+v,所以关于x的方程x*(a*x)=-
1
4
变为(a+1)x2+(a+1)x+
1
4
=0
,而此方程有两个不同的实数根,所以根据判别式和一元二次方程的一般形式的定义可以得到关于a的不等式组,解不等式组即可解决问题.
解答:解:由x*(a*x)=-
1
4

(a+1)x2+(a+1)x+
1
4
=0

依题意有
a+1≠0
△=(a+1)2-(a+1)>0

解得,a>0,或a<-1.
故答案为:a>0,或a<-1.
点评:此题主要考查了一元二次方程的判别式,解题时首先正确理解定义的运算法则得到关于x的方程,然后根据判别式和一元二次方程的定义得到不等式组解决问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网