题目内容
【题目】如图,已知AB=12,点C,D在AB上,且AC=DB=2,点P从点C沿线段CD向点D运动(运动到点D停止),以AP、BP为斜边在AB的同侧画等腰Rt△APE和等腰Rt△PBF,连接EF,取EF的中点G,下列说法中正确的有( )
①△EFP的外接圆的圆心为点G;②四边形AEFB的面积不变;
③EF的中点G移动的路径长为4;④△EFP的面积的最小值为8.
A. 1个 B. 2个 C. 3个 D. 4个
【答案】B
【解析】试题解析:如图,分别延长AE、BF交于点H.
∵等腰Rt△APE和等腰Rt△PBF,
∴,
.
∴四边形EPFH为平行四边形,
∴EF与HP互相平分.
∵G为EF的中点,
∴G也为PH中点,
即在P的运动过程中,G始终为PH的中点,
∴G的运行轨迹为△HCD的中位线MN.
∵CD=1222=8,
∴MN=4,即G的移动路径长为4.
故③EF的中点G移动的路径长为4,正确;
∵G为EF的中点,
∴①△EFP的外接圆的圆心为点G,正确.
∴①③正确.
∵点P从点C沿线段CD向点D运动(运动到点D停止),易证 所以四边形面积便是三个直角三角形的面积和,设cp=x,则四边形面积
∴AP不断增大,
∴四边形的面积S也会随之变化,故②错误.
④等腰Rt△APE和等腰Rt△PBF,
当AP=AC=2时,即
S△PEF最小,故④错误;
故选B.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目