题目内容
【题目】如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=50°,∠BDC=75°.求∠BED的度数.
【答案】130°
【解析】
由DE∥BC,根据平行线的性质可得出“∠C=∠ADE,∠AED=∠ABC,∠EDB=∠CBD”,根据角平行线的性质可设∠CBD=α,则∠AED=2α,通过角的计算得出α=25°,再依据互补角的性质可得出结论.
∵DE∥BC,
∴∠C=∠ADE,∠AED=∠ABC,∠EDB=∠CBD,
又∵BD平分∠ABC,
∴∠CBD=∠ABD=∠EDB,
设∠CBD=α,则∠AED=2α.
∵∠A+∠AED+∠ADE=180°,∠ADE+∠EDB+∠BDC=180°,
∴∠A+∠AED=∠EDB+∠BDC,即50°+2α=α+75°,
解得:α=25°.
又∵∠BED+∠AED=180°,
∴∠BED=180°-∠AED=180°-25°×2=130°.
练习册系列答案
相关题目