题目内容
【题目】如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于M,交DC于N.
(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;
(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?
【答案】(1)s=-x2+x+2;(2)当AE=x=1时,四边形ADNM的面积S的值最大,最大值是.
【解析】
1)解题的关键是作辅助线ME、MN,证明出来△EBA≌△MNF,把需要解决的问题转化成解直角三角形的问题,利用勾股定理解答.
(2)根据(1)的答案,利用二次函数的最值问题即可求出.
(1)连接ME,设MN交BE于P,根据题意,得
MB=ME,MN⊥BE.
过N作AB的垂线交AB于F.
在Rt△MBP中,∠MBP+∠BMN=90°,
在Rt△MNF中,∠FNM+∠BMN=90°,
∴∠MBP=∠MNF.
在Rt△EBA与Rt△MNF中,
∵AB=FN,
∴Rt△EBA≌Rt△MNF,故MF=AE=x.
在Rt△AME中,AE=x,ME=MB=AB-AM=2-AM,
∴(2-AM)2=x2+AM2.
4-4AM+AM2=x2+AM2,即4-4AM=x2,
解得AM=1-x2.
所以梯形ADNM的面积S=×AD=×2
=AM+AF=AM+AM+MF=2AM+AE
=2(1-x2)+x
=-x2+x+2
即所求关系式为s=-x2+x+2.
(2)s=-x2+x+2=-(x2-2x+1)+=-(x-1)2+
故当AE=x=1时,四边形ADNM的面积S的值最大,最大值是.
【题目】某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整.
(1)按如下分数段整理、描述这两组数据:
成绩x 学生 | 70≤x≤74 | 75≤x≤79 | 80≤x≤84 | 85≤x≤89 | 90≤x≤94 | 95≤x≤100 |
甲 | ______ | ______ | ______ | ______ | ______ | ______ |
乙 | 1 | 1 | 4 | 2 | 1 | 1 |
(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:
学生 | 极差 | 平均数 | 中位数 | 众数 | 方差 |
甲 | ______ | 83.7 | ______ | 86 | 13.21 |
乙 | 24 | 83.7 | 82 | ______ | 46.21 |
(3)若从甲、乙两人中选择一人参加知识竞赛,你会选______(填“甲”或“乙),理由为______.
【题目】阅读下列材料:
材料一:
早在2011年9月25日,北京故宫博物院就开始尝试网络预售门票,2011年全年网络售票仅占1.68%.2012年至2014年,全年网络售票占比都在2%左右.2015年全年网络售票占17.33%,2016年全年网络售票占比增长至41.14%.2017年8月实现网络售票占比77%.2017年10月2日,首次实现全部网上售票.与此同时,网络购票也采用了“人性化”的服务方式,为没有线上支付能力的观众提供代客下单服务.实现全网络售票措施后,在北京故宫博物院的精细化管理下,观众可以更自主地安排自己的行程计划,获得更美好的文化空间和参观体验.
材料二:
以下是某同学根据网上搜集的数据制作的2013-2017年度中国国家博物馆参观人数及年增长率统计表.
年度 | 2013 | 2014 | 2015 | 2016 | 2017 |
参观人数(人次) | 7 450 000 | 7 630 000 | 7 290 000 | 7 550 000 | 8 060 000 |
年增长率(%) | 38.7 | 2.4 | -4.5 | 3.6 | 6.8 |
他还注意到了如下的一则新闻:2018年3月8日,中国国家博物馆官方微博发文,宣布取消纸质门票,观众持身份证预约即可参观. 国博正在建设智慧国家博物馆,同时馆方工作人员担心的是:“虽然有故宫免(纸质)票的经验在前,但对于国博来说这项工作仍有新的挑战.参观故宫需要观众网上付费购买门票,他遵守预约的程度是不一样的.但(国博)免费就有可能约了不来,挤占资源,所以难度其实不一样.” 尽管如此,国博仍将积极采取技术和服务升级,希望带给观众一个更完美的体验方式.
根据以上信息解决下列问题:
(1)补全以下两个统计图;
(2)请你预估2018年中国国家博物馆的参观人数,并说明你的预估理由.