题目内容

【题目】如图,已知数轴上点A,B是数轴上的一点,AB=12,动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数,经t秒后点P走过的路程为(用含t的代数式表示);
(2)若在动点P运动的同时另一动点Q从点B也出发,并以每秒4个单位长度的速度沿数轴向左匀速运动,问经多少时间点P就能追上点Q?
(3)若M为AP的中点,N为BP的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.

【答案】解:(1)设B点表示x,则有
AB=8﹣x=12,解得x=﹣4.
∵动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,
∴经t秒后点P走过的路程为6t.
故答案为:﹣4;6t.
(2)设经t秒后P点追上Q点,根据题意得:
6t﹣4t=12,
解得t=6.
答:经过6秒时间点P就能追上点Q.
(3)不论P点运动到哪里,线段MN都等于6.
分两种情况分析:
①点P在线段AB上时,如图1,

MN=PM+PN=PA+PB=(PA+PB)=AB=×12=6;
②点P在线段AB的延长线上时,如图2,

MN=PM﹣PN=PA﹣PB=(PA﹣PB)=AB=×12=6.
综上可知,不论P运动到哪里,线段MN的长度都不变,都等于6.
【解析】(1)设出B点表示的数为x,由数轴上两点间的距离即可得到x的方程,解方程即可得出x,由路程=速度×时间可得出点P走过的路程;
(2)设经t秒后P点追上Q点,根据题意可得,关于t的一元一次方程,解方程即可得出时间t;
(3)由P点位置的不同分两种情况考虑,依据中点的定义,可以找到线段间的关系,从而能找出MN的长度.
【考点精析】认真审题,首先需要了解数轴(数轴是规定了原点、正方向、单位长度的一条直线).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网