题目内容
【题目】如图,在四边形ABCD中,AB∥CD,点E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,从而把AB,AD,DC转化在一个三角形中即可判断.试探究AB,AD,DC之间的等量关系,并证明你的结论.
【答案】AD=AB+DC;证明见解析
【解析】
延长AE交DC的延长线于点F,证明△AEB≌△FEC,根据全等三角形的性质得到AB=FC,根据等腰三角形的判定得到DF=AD,证明结论.
解:AD=AB+DC;
理由如下:延长AE交DC的延长线于点F,
∵AB∥DC,
∴∠BAF=∠F,
∵E是BC的中点,
∴CE=BE,
在△AEB和△FEC中, ,
∴△AEB≌△FEC(AAS),
∴AB=FC,
∵AE是∠BAD的平分线,
∴∠DAF=∠BAF,
∴∠DAF=∠F,
∴DF=AD,
∴AD=DC+CF=DC+AB,
即AD=AB+DC
练习册系列答案
相关题目