题目内容

【题目】如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.

(1)观察猜想
图1中,线段PM与PN的数量关系是 , 位置关系是
(2)探究证明
把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;

(3)拓展延伸
把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.

【答案】
(1)PM=PN;PM⊥PN
(2)

解:由旋转知,∠BAD=∠CAE,

∵AB=AC,AD=AE,

∴△ABD≌△ACE(SAS),

∴∠ABD=∠ACE,BD=CE,

同(1)的方法,利用三角形的中位线得,PN= BD,PM= CE,

∴PM=PN,

∴△PMN是等腰三角形,

同(1)的方法得,PM∥CE,

∴∠DPM=∠DCE,

同(1)的方法得,PN∥BD,

∴∠PNC=∠DBC,

∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,

∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC

=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC

=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,

∵∠BAC=90°,

∴∠ACB+∠ABC=90°,

∴∠MPN=90°,

∴△PMN是等腰直角三角形


(3)

解:如图2,同(2)的方法得,△PMN是等腰直角三角形,

∴MN最大时,△PMN的面积最大,

∴DE∥BC且DE在顶点A上面,

∴MN最大=AM+AN,

连接AM,AN,

在△ADE中,AD=AE=4,∠DAE=90°,

∴AM=2

在Rt△ABC中,AB=AC=10,AN=5

∴MN最大=2 +5 =7

∴S△PMN最大= PM2= × MN2= ×(7 2=


【解析】解:(1)∵点P,N是BC,CD的中点,
∴PN∥BD,PN= BD,
∵点P,M是CD,DE的中点,
∴PM∥CE,PM= CE,
∵AB=AC,AD=AE,
∴BD=CE,
∴PM=PN,
∵PN∥BD,
∴∠DPN=∠ADC,
∵PM∥CE,
∴∠DPM=∠DCA,
∵∠BAC=90°,
∴∠ADC+∠ACD=90°,
∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,
∴PM⊥PN,
故答案为:PM=PN,PM⊥PN,
(1)利用三角形的中位线得出PM= CE,PN= BD,进而判断出BD=CE,即可得出结论,另为利用三角形的中位线得出平行线即可得出结论;(2)先判断出△ABD≌△ACE,得出BD=CE,同(1)的方法得出PM= BD,PN= BD,即可得出PM=PN,同(1)的方法即可得出结论;(3)先判断出MN最大时,△PMN的面积最大,进而求出AN,AM,即可得出MN最大=AM+AN,最后用面积公式即可得出结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网