题目内容
【题目】为了迎接“六一”儿童节.某儿童运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:
运动鞋 价格 | 甲 | 乙 |
进价(元/双) | m | m﹣20 |
售价(元/双) | 240 | 160 |
已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.
(1)求m的值;
(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?该专卖店要获得最大利润应如何进货?
【答案】(1)100;(2)共有11种方案;(3)此时应购进甲种运动鞋105双,购进乙种运动鞋95双.
【解析】(1)依题意得,=,
整理得,3000(m﹣20)=2400m,
解得m=100,
经检验,m=100是原分式方程的解,
所以,m=100;
(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,
根据题意得,,
解不等式①得,x≥95,
解不等式②得,x≤105,
所以,不等式组的解集是95≤x≤105,
∵x是正整数,105﹣95+1=11,
∴共有11种方案;
(3)设总利润为W,则W=60x+16000(95≤x≤105),
60>0,W随x的增大而增大,
所以,当x=105时,W有最大值,
即此时应购进甲种运动鞋105双,购进乙种运动鞋95双.
练习册系列答案
相关题目