题目内容
【题目】如图,点C是⊙O直径AB上一点,过C作CD⊥AB交⊙O于点D,连接DA,延长BA至点P,连接DP,使∠PDA=∠ADC.
(1)求证:PD是⊙O的切线;
(2)若AC=3,tan∠PDC=,求BC的长.
【答案】(1)证明见解析;(2)BC=12.
【解析】
(1)求出∠ODA+∠PDA=∠ADC+∠DAO=90°,根据切线的判定得出即可;
(2)求出∠PDC=∠DOC,解直角三角形求出=,设DC=4x,OC=3x,求出3x+3=5x,求出x,即可得出答案.
(1)证明:连接OD
∵OD=OA
∴∠ODA=∠OAD
∵CD⊥AB于点C
∴∠OAD+∠ADC=90°
∴∠ODA+∠ADC= 90°
∵∠PDA=∠ADC
∴∠PDA+∠ODA=90°
即∠PDO=90°
∴PD⊥OD
∵D在⊙O上
∴PD是⊙O的切线
(2)解:∵∠PDO=90°
∴∠PDC+∠CDO=90°
∵CD⊥AB于点C
∴∠DOC+∠CDO=90°
∴∠PDC=∠DOC
=
设DC = 4x,CO = 3x,则OD=5x
∵AC=3
∴OA=3x+3
∴3x+3=5x
∴x=
∴OC=3x=, OD=OB=5x=
∴BC=12
【题目】如图,Rt△ABC中,∠C=90°,P是CB边上一动点,连接AP,作PQ⊥AP交AB于Q.已知AC=3cm,BC=6cm,设PC的长度为xcm,BQ的长度为ycm.
小青同学根据学习函数的经验对函数y随自变量x的变化而变化的规律进行了探究.
下面是小青同学的探究过程,请补充完整:
(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y的几组对应值;
x/cm | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 6 |
y/cm | 0 | 1.56 | 2.24 | 2.51 | m | 2.45 | 2.24 | 1.96 | 1.63 | 1.26 | 0.86 | 0 |
(说明:补全表格时,相关数据保留一位小数)
m的值约为多少cm;
(2)在平面直角坐标系中,描出以补全后的表格中各组数值所对应的点(x,y),画出该函数的图象;
(3)结合画出的函数图象,解决问题:
①当y>2时,写出对应的x的取值范围;
②若点P不与B,C两点重合,是否存在点P,使得BQ=BP?