题目内容
【题目】在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A﹣….的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是 .
【答案】(0,﹣2)
【解析】
试题分析:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),
∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,
∴绕四边形ABCD一周的细线长度为2+3+2+3=10,
2016÷10=201…6,
∴细线另一端在绕四边形第202圈的第6个单位长度的位置,
即CD中间的位置,点的坐标为(0,﹣2),
故答案为:(0,﹣2).
练习册系列答案
相关题目