题目内容
【题目】⊙O的半径为1,弦AB= ,弦AC= ,则∠BAC度数为 .
【答案】75°或15°
【解析】解:有两种情况:
①如图1所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,
∴∠OEA=∠OFA=90°,
由垂径定理得:AE=BE= ,AF=CF= ,
cos∠OAE= = ,cos∠OAF= = ,
∴∠OAE=30°,∠OAF=45°,∴∠BAC=30°+45°=75°;
②如图2所示:
连接OA,过O作OE⊥AB于E,OF⊥AC于F,
∴∠OEA=∠OFA=90°,
由垂径定理得:AE=BE= ,AF=CF= ,
cos∠OAE═ = ,cos∠OAF= = ,
∴∠OAE=30°,∠OAF=45°,
∴∠BAC=45°﹣30°=15°;
故答案为:75°或15°.
连接OA,过O作OE⊥AB于E,OF⊥AC于F,根据垂径定理求出AE、FA值,根据解直角三角形的知识求出∠OAB和∠OAC,然后分两种情况求出∠BAC即可.本题考查了特殊角的三角函数值和垂径定理的应用.此题难度适中,解题的关键是根据题意作出图形,求出符合条件的所有情况.此题比较好,但是一道比较容易出错的题目.
练习册系列答案
相关题目