题目内容

精英家教网如图,△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE的中点,如果BD∥CF,BC=2
5
,则线段CD的长为
 
分析:根据等腰三角形的性质和勾股定理求解.
解答:精英家教网解:连接BF,
∵BD∥CF,
∴∠FCB=∠DBC.
∵AB=AC,
AB
=
AC
BD
=
CD

∴∠BCD=∠DBC,AD是BC的垂直平分线,
∴四边形DCFB是菱形,
∴∠FCB=∠DCB,CE为等腰三角形FCD的顶角平分线.
设ED=x,则AE=5x,故x•5x=(
5
2
解得x=1,x=-1(舍去).
根据勾股定理得:CD=
12+(
5
)
2
=
6
点评:此题是一道综合性题目,考查了等腰三角形三线合一,相交弦定理,等弧所对的弦相等的知识.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网