题目内容
【题目】操作:在△ABC中,AC=BC=4,∠C=90°,将一块直角三角板的直角顶点放在斜边AB的中点P处,将三角板绕点P旋转,三角板的两直角边分别交射线AC、CB于D、E两点。如图①、②、③是旋转三角板得到的图形中的3种情况。
探究:
(1)如图①,PD⊥AC于D,PE⊥BC于E,则重叠部分四边形DCEP的面积为___,周长___.
(2)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②加以证明;
(3)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由。
【答案】(1)4,8;(2)证明见详解;(3)CE=0或2或或;
【解析】
(1)根据点P是AB的中点可判断出PD、PE是△ABC的中位线,继而可得出PD、PE的长度,也可得出四边形DCEP的周长和面积.
(2)先根据图形可猜测PD=PE,从而连接CP,通过证明△PCD≌△PEB,可得出结论.
(3)题目只要求是等腰三角形,所以需要分四种情况进行讨论,这样每一种情况下的CE的长也就不难得出.
解:(1)根据△ABC中,AC=BC=4,∠C=90°,
∵PD⊥AC,PE⊥BC,
∴PD∥BC,PE∥AC,
又∵点P是AB中点,
∴PD、PE是△ABC的中位线,
∴PD=CE=2,PE=CD=2,
∴四边形DCEP是正方形,面积为:2×2=4,周长为:2+2+2+2=8;
故答案为:4,8
(2)PD=PE;
证明如下:AC=BC,∠C=90°,P为AB中点,连接CP,
∴CP平分∠C,CP⊥AB,
∵∠PCB=∠B=45°,
∴CP=PB,
∵∠DPC+∠CPE=∠CPE+∠EPB=90°,
∴∠DPC=∠EPB,
在△PCD和△PEB中,
,
∴△PCD≌△PBE(ASA),
∴PD=PE.
(3)△PBE是等腰三角形,
∵AC=BC=4,∠ACB=90°,
∴,
∴PB=;
①PE=PB时,此时点C与点E重合,CE=0;
②当PB=BE时,如图,E在线段BC上,
CE=;
③当PB=BE时,如图,E在CB的延长线上,CE=;
④当PE=BE时,此时,点E是BC中点,则CE=2.
综合上述,CE的长为:0或2或或;