题目内容
【题目】如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AB=5,则CD= .
【答案】5
【解析】解:连接OA, ∵∠BAC=120°,AB=AC,
∴∠ABC=∠ACB=30°,∠D=60°,
∵BD为⊙O的直径,
∴∠BCD=90°,
∴∠DBC=30°,
∴∠ABO=60°,
∵BO=AO,
∴△ABO是等边三角形,
∴BO=AB=5,
∴BD=10,
∴CD=5,
所以答案是:5.
【考点精析】关于本题考查的等腰三角形的性质和圆周角定理,需要了解等腰三角形的两个底角相等(简称:等边对等角);顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半才能得出正确答案.
练习册系列答案
相关题目
【题目】有这样一个问题:探究函数y= ﹣ x的图象与性质. 小东根据学习函数的经验,对函数y= ﹣ x的图象与性质进行了探究.
下面是小东的探究过程,请补充完整,并解决相关问题:
(1)函数y= ﹣ x的自变量x的取值范围是;
(2)下表是y与x的几组对应值,求m的值;
x | … | ﹣4 | ﹣3 | ﹣2 | ﹣ | ﹣1 | ﹣ |
| 1 | 2 | 3 | 4 | … |
y | … |
|
|
|
|
|
|
|
| ﹣ | ﹣ | m | … |
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)进一步探究发现,该函数图象在第二象限内的最低点的坐标是(﹣2, ),结合函数的图象,写出该函数的其它性质(一条即可) .
(5)根据函数图象估算方程 ﹣ x=2的根为 . (精确到0.1)