题目内容
【题目】如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E.
(1)试判断△BDE的形状,并说明理由;
(2)若AB=4,AD=8,求△BDE的面积.
【答案】
(1)解:△BDE是等腰三角形.
由折叠可知,∠CBD=∠EBD,
∵AD∥BC,
∴∠CBD=∠EDB,
∴∠EBD=∠EDB,
∴BE=DE,
即△BDE是等腰三角形
(2)解:设DE=x,则BE=x,AE=8﹣x,
在Rt△ABE中,由勾股定理得:AB2+AE2=BE2即42+(8﹣x)2=x2,
解得:x=5,
所以S△BDE= DE×AB= ×5×4=10
【解析】(1)由折叠可知,∠CBD=∠EBD,再由AD∥BC,得到∠CBD=∠EDB,即可得到∠EBD=∠EDB,于是得到BE=DE,等腰三角形即可证明;(2)设DE=x,则BE=x,AE=8﹣x,在Rt△ABE中,由勾股定理求出x的值,再由三角形的面积公式求出面积的值.
练习册系列答案
相关题目