题目内容
【题目】如图,AB∥CD,AB=CD,点E、F在BC上,且BF=CE.
(1)求证:△ABE≌△DCF;
(2)试证明:以A、F、D、E为顶点的四边形是平行四边形.
【答案】(1)证明见解析;(2)证明见解析
【解析】(1)根据平行线性质求出∠B=∠C,等量相减求出BE=CF,根据SAS推出两三角形全等即可;
(2)借助(1)中结论△ABE≌△DCF,可证出AE平行且等于DF,即可证出结论.
证明:(1)如图,∵AB∥CD,
∴∠B=∠C.
∵BF=CE
∴BE=CF
∵在△ABE与△DCF中,
,
∴△ABE≌△DCF(SAS);
(2)如图,连接AF、DE.
由(1)知,△ABE≌△DCF,
∴AE=DF,∠AEB=∠DFC,
∴∠AEF=∠DFE,
∴AE∥DF,
∴以A、F、D、E为顶点的四边形是平行四边形.
练习册系列答案
相关题目