题目内容
【题目】如图,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(﹣2,0),B(﹣1,﹣3).
(1)求抛物线的解析式;
(2)点M为y轴上任意一点,当点M到A、B两点的距离之和为最小时,求此时点M的坐标.
【答案】(1)y=x2﹣4;(2)M(0,﹣2)
【解析】(1)将A、B点的坐标代入抛物线的解析式中即可求出待定系数的值;
(2)由于A、D关于抛物线对称轴即y轴对称,那么连接BD,BD与y轴的交点即为所求的M点,可先求出直线BD的解析式,即可得到M点的坐标;
解:(1)由题意可得:,
解得;
∴抛物线的解析式为:y=x2﹣4;
(2)由于A、D关于抛物线的对称轴(即y轴)对称,连接BD.
则BD与y轴的交点即为M点;
设直线BD的解析式为:y=kx+b(k≠0),则有:
,
解得;
∴直线BD的解析式为y=x﹣2,
∴点M(0,﹣2).
练习册系列答案
相关题目
【题目】某旅行杜拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:
人数m | 0<m≤100 | 100<m≤200 | m>200 |
收费标准(元/人) | 90 | 85 | 75 |
甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.
(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?
(2)两所学校报名参加旅游的学生各有多少人?