题目内容

(2013•青羊区一模)如图,⊙O的半径为2,弦AB=2
3
,点C在弦AB上,AC=
1
4
AB,则OC的长为
7
2
7
2
分析:过O作OD⊥AB于D,根据垂径定理求出BD,根据勾股定理求出OD,根据勾股定理求出OC即可.
解答:解:过O作OD⊥AB于D,
∵OD⊥AB,OD过O,AB=2
3

∴AD=BD=
1
2
AB=
3

∵AB=2
3
,点C在弦AB上,AC=
1
4
AB,
∴AC=
1
2
3
,CD=AD-AC=
1
2
3

在Rt△OBD中,由勾股定理得:OD=
22-(
3
)2
=1,
在Rt△OCD中,由勾股定理得:OC=
OD2+CD2
=
12+(
1
2
3
)2
=
7
2

故答案为:
7
2
点评:本题考查了初级定理和勾股定理的应用,关键是构造直角三角形,主要考查学生运用定理进行推理和计算的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网