题目内容

如图,直线y=-
3
4
x经过抛物线y=ax2+8ax-3的顶点M,点P(x,y)是抛物线上的动点,点Q是抛物线对称轴上的动点.
(1)求抛物线的解析式;
(2)当PQOM时,设线段PQ的长为d,求d关于x的函数解析式;
(3)当以P、Q、O、M四点为顶点的四边形是平行四边形时,求P、Q两点的坐标.
(1)抛物线y=ax2+8ax-3的顶点是(-4,-16a-3),代入y=-
3
4
x,
得到-16a-3=3,
解得a=-
3
8

因而函数是y=-
3
8
x2-3x-3

(2)∵a=-
3
8
,∴-16a-3=3,
∴抛物线y=-
3
8
x2-3x-3的顶点坐标是(-4,3),
设直线OM的解析式是y=kx,把x=-4,y=3代入得3=-4k,
解得k=-
3
4

点P(x,y)即(x,-
3
8
x2-3x-3),
作PE⊥MQ于点E.则PE=x+4或-4-x.
∵PQOM,
EQ
PE
=
3
4

PE
PQ
=
4
5

∴d=-
5
4
x-5或d=
5
4
x+5;

(3)如图P1,Q1时MP1=OQ1=3,直接得出点的坐标:
P1(0,-3),Q1(-4,0);
当MP2=OQ2=3时,直接得出点的坐标:P2(0,-3),Q2(-4,6);
∵MO=5,
∵根据点到直线的距离公式得到d=
5
4
x±5,
∴x=-8时,d=5,
∴P点的横坐标为-8,代入二次函数解析式求出纵坐标即可,
∴P(-8,-3),Q(-4,-6);
故答案为:P1(0,-3),Q1(-4,0);P2(0,-3),Q2(-4,6);P(-8,-3),Q(-4,-6).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网