题目内容
学校准备购买一批乒乓球桌.现有甲、乙两家商店卖价如下:甲商店:每张需要700元.乙商店:交1000元会员费后,每张需要600元.设学校需要乒乓球桌x张,在甲商店买和在乙商店买所需费用分别为y1、y2元.
(1)分别写出y1、y2的函数解析式.
(2)当学校添置多少张时,两种方案的费用相同?
(3)若学校需要添置乒乓球桌20张,那么在那个商店买较省钱?说说你的理由.
(1)y1=700x(x>0),y2=600x+1000(x>0)
(2)10
(3)在乙商店买便宜,理由见解析
解析试题分析:(1)根据题意可得甲商店的花费=700元×乒乓球桌x张;乙商店的花费=600元×乒乓球桌x张+1000元;
(2)两种方案的费用相同,就是(1)中的两个函数关系式中的函数值相等,可得方程700x=600x+1000,再解方程即可;
(3)把x=20分别代入两个函数关系式,计算出花费即可.
解:(1)由题意得:y1=700x(x>0),
y2=600x+1000(x>0);
(2)设 y1=y2,
700x=600x+1000,
解得:x=10;
(3)y1=700x=700×20=14000,
y2=600x+1000=600×20+1000=13000,
在乙商店买便宜.
点评:此题主要考查了一次函数的应用,关键是正确理解题意,弄清楚两个商店中的收费情况.
练习册系列答案
相关题目
为了迎接“十•一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:
运动鞋 价格 | 甲 | 乙 |
进价(元/双) | m | m﹣20 |
售价(元/双) | 240 | 160 |
(1)求m的值;
(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?
(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?
抛物线y=(x﹣1)2﹣3的对称轴是( )
A.y轴 | B.直线x=﹣1 | C.直线x=1 | D.直线x=﹣3 |
函数与在同一直角坐标系中的图象可能是( )
A. | B. | C. | D. |