题目内容
(2012?慈溪市)99999×77778+33333×66666=
9999900000
9999900000
.分析:根据算式可将666666改写成3×22222,然后用乘法结合律计算3×33333等于99999,再利用乘法分配律进行计算即可得到答案.
解答:解:99999×77778+33333×66666,
=99999×77778+33333×(3×22222),
=99999×77778+(33333×3)×22222,
=99999×77778+99999×22222,
=99999×(77778+22222),
=99999×100000,
=9999900000;
故答案为:9999900000.
=99999×77778+33333×(3×22222),
=99999×77778+(33333×3)×22222,
=99999×77778+99999×22222,
=99999×(77778+22222),
=99999×100000,
=9999900000;
故答案为:9999900000.
点评:此题主要考查的是乘法结合律和乘法分配律再整数计算中的运算.
练习册系列答案
相关题目