题目内容
一个正方体.六个面上分别写着六个连续整数.且每个相对面上的两个数之和相等.如图为从一个方向看到的形状.
分析:因为是连续正整数,所以有三种可能,第一种是6、7、8、9、10、11,即11对6,10对7,8对9,由于10与7相邻,此种不可能;第二种可能是5、6、7、8、9、10,此种没有11,不可能;第三种是7、8、9、10、11、12,即12对7,11对8,10对9,因此,只有这种可能,把这几个数字相加即可.
解答:解:由题意可知,这六个面上的连续数字是:7、8、9、10、11、12,
7+8+9+10+11+12=57;
故答案为:57.
7+8+9+10+11+12=57;
故答案为:57.
点评:解答此题的关键是弄清符合条件的这6个连续整数各是多少.
练习册系列答案
相关题目