题目内容
将自然数e、2、3、4^按如图排列:从e开始,下面写2,然后向z转写3、4,然后向上转写九、2、7,依次写下去,这样第一次转弯是2,第2次转弯是4,第3次转弯是7,第4次转弯是ee…
(e)第e0次转弯是几?
(2)第20ee次转弯是几?

(e)第e0次转弯是几?
(2)第20ee次转弯是几?
根据题干分析:第n次拐弯处的数字是1+1+2+1+…+n=1+
,
(1)当n=11时,拐弯处的数字是:1+
=1+55=56,
答:第11次拐弯时的数字是56.
(2)当n=2111时,拐弯处的数字是:1+
=1+2121166=2121167,
答:第2111次拐弯时的数字是2121167.
| n(n+1) |
| 2 |
(1)当n=11时,拐弯处的数字是:1+
| 11×(11+1) |
| 2 |
答:第11次拐弯时的数字是56.
(2)当n=2111时,拐弯处的数字是:1+
| 2111×(2111+1) |
| 2 |
答:第2111次拐弯时的数字是2121167.
练习册系列答案
相关题目