题目内容
①
÷[(
-
)÷
]
×
+
÷9
②2012×
③
+
+
+
④
+
+
+
+…+
⑤2×3×4×(
-
+
)
⑥(
+
)÷(0.75-
)
⑦63×
+36÷4+25%
| 4 |
| 5 |
| 3 |
| 5 |
| 1 |
| 4 |
| 7 |
| 10 |
| 3 |
| 4 |
| 1 |
| 9 |
| 1 |
| 4 |
②2012×
| 2010 |
| 2011 |
③
| 1 |
| 21 |
| 202 |
| 2121 |
| 50505 |
| 212121 |
| 13131313 |
| 21212121 |
④
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| 20 |
| 1 |
| 420 |
⑤2×3×4×(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
⑥(
| 1 |
| 6 |
| 1 |
| 2 |
| 3 |
| 16 |
⑦63×
| 1 |
| 4 |
考点:分数的巧算
专题:计算问题(巧算速算)
分析:①根据分数四则混合运算的运算顺序进行计算即可;
②先把除法转化为乘法,然后应用乘法分配律进行简算即可;
③2012分解为2011+1,然后运用乘法分配律进行简算;
④根据分母的特点,可以把分母拆成一个数和21的乘积的形式,根据分母拆出来的数,可以把分子拆成含有分母中一个数的形式,然后约分即可;
⑤运用拆项法,把
+
+
+
+…+
转化为
+(
-
)+(
-
)+(
-
)+…+(
-
),然后去括号计算即可;
⑥根据运算顺序进行计算或运用乘法分配律进行简算都可;
⑦按照运算顺序进行计算;
⑧先把除法转化为乘法,然后应用乘法分配律进行简算即可.
②先把除法转化为乘法,然后应用乘法分配律进行简算即可;
③2012分解为2011+1,然后运用乘法分配律进行简算;
④根据分母的特点,可以把分母拆成一个数和21的乘积的形式,根据分母拆出来的数,可以把分子拆成含有分母中一个数的形式,然后约分即可;
⑤运用拆项法,把
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| 20 |
| 1 |
| 420 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 20 |
| 1 |
| 21 |
⑥根据运算顺序进行计算或运用乘法分配律进行简算都可;
⑦按照运算顺序进行计算;
⑧先把除法转化为乘法,然后应用乘法分配律进行简算即可.
解答:
解:①
÷[(
-
)÷
]
=
÷[
×
]
=
×2
=
②
×
+
÷9
=
×
+
×
=(
+
)×
=
③2012×
=(2011+1)×
=2011×
+1×
=2010
④
+
+
+
=
+
+
+
=
+
+
+
=
+
+
=1.
⑤
+
+
+
+…+
=
+(
-
)+(
-
)+(
-
)+…+(
-
)
=
+
-
+
-
+
-
+…+
-
=1-
=
⑥2×3×4×(
-
+
)
=2×3×4×(
-
+
)
=2×3×4×
=10
⑦(
+
)÷(0.75-
)
=
÷(
-
)
=
×
=
⑧63×
+36÷4+25%
=63×
+36×
+
=(63+36+1)×
=25
| 4 |
| 5 |
| 3 |
| 5 |
| 1 |
| 4 |
| 7 |
| 10 |
=
| 4 |
| 5 |
| 7 |
| 20 |
| 10 |
| 7 |
=
| 4 |
| 5 |
=
| 8 |
| 5 |
②
| 3 |
| 4 |
| 1 |
| 9 |
| 1 |
| 4 |
=
| 3 |
| 4 |
| 1 |
| 9 |
| 1 |
| 4 |
| 1 |
| 9 |
=(
| 3 |
| 4 |
| 1 |
| 4 |
| 1 |
| 9 |
=
| 1 |
| 9 |
③2012×
| 2010 |
| 2011 |
=(2011+1)×
| 2010 |
| 2011 |
=2011×
| 2010 |
| 2011 |
| 2010 |
| 2011 |
=2010
| 2010 |
| 2011 |
④
| 1 |
| 21 |
| 202 |
| 2121 |
| 50505 |
| 212121 |
| 13131313 |
| 21212121 |
=
| 1 |
| 21 |
| 202 |
| 21×101 |
| 50505 |
| 21×10101 |
| 13131313 |
| 21×1010101 |
=
| 1 |
| 21 |
| 2×101 |
| 21×101 |
| 5×10101 |
| 21×10101 |
| 13×1010101 |
| 21×1010101 |
=
| 1 |
| 21 |
| 5 |
| 21 |
| 13 |
| 21 |
=1.
⑤
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| 20 |
| 1 |
| 420 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 20 |
| 1 |
| 21 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 20 |
| 1 |
| 21 |
=1-
| 1 |
| 21 |
=
| 20 |
| 21 |
⑥2×3×4×(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
=2×3×4×(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
=2×3×4×
| 5 |
| 12 |
=10
⑦(
| 1 |
| 6 |
| 1 |
| 2 |
| 3 |
| 16 |
=
| 2 |
| 3 |
| 3 |
| 4 |
| 3 |
| 16 |
=
| 2 |
| 3 |
| 16 |
| 9 |
=
| 32 |
| 27 |
⑧63×
| 1 |
| 4 |
=63×
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
=(63+36+1)×
| 1 |
| 4 |
=25
点评:此题属于分数的巧算,灵活掌握常用的一些运算定律,是解答此题的关键.
练习册系列答案
相关题目