题目内容

圆的半径增加
1
4
,圆的周长增加
1
4
1
4
,圆的面积增加
9
16
9
16
分析:设圆的半径为r,则增加后的半径是(1+
1
4
)r=
5
4
r,由此利用圆的周长公式表示出变化前后的周长即可解答.
解答:解:设圆的半径为r,则增加后的半径是(1+
1
4
)r=
5
4
r,
原来的圆的周长为:2πr,
半径增加后的周长:2π×
5
4
r=
5
2
πr,
则周长增加了:(
5
2
πr-2πr)÷2πr=
1
2
πr÷2πr=
1
4

原来圆的面积是:πr2
半径增加后的面积是:π(
5
4
r)2=
25
16
πr2
则面积增加了:(
25
16
πr2-πr2)÷πr2=
9
16
πr2÷πr2=
9
16

答:它的周长增加
1
4
,面积增加
9
16

故答案为:
1
4
9
16
点评:此题考查了圆的周长和面积公式的灵活应用,这里要注意是把原来圆的周长和面积分别看做单位“1”.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网