题目内容
19.脱式计算,能简便的要用简便方法.(1)$\frac{1}{4}$+$\frac{3}{5}$-$\frac{11}{20}$
(2)$\frac{12}{5}$-$\frac{4}{9}$-$\frac{7}{5}$
(3)10-$\frac{7}{12}$-$\frac{5}{12}$
(4)$\frac{11}{8}$-( $\frac{3}{2}$-$\frac{5}{4}$)
(5)6.25+$\frac{3}{7}$+$\frac{3}{4}$+$\frac{4}{7}$.
分析 (1)先通分,再根据同分母分数相加减的计算法则计算即可;
(2)把算式变成$\frac{12}{5}$-$\frac{4}{9}$-$\frac{7}{5}$=$\frac{12}{5}$-$\frac{7}{5}$-$\frac{4}{9}$,然后按从左到右的运算顺序计算即可;
(3)根据减法的性质简算即可;
(4)先通分,再根据同分母分数相加减的计算法则计算即可;
(5)根据加法的交换律与结合律简算即可.
解答 解:(1)$\frac{1}{4}$+$\frac{3}{5}$-$\frac{11}{20}$
=$\frac{5}{20}$+$\frac{12}{20}$-$\frac{11}{20}$
=$\frac{6}{20}$
=$\frac{3}{10}$;
(2)$\frac{12}{5}$-$\frac{4}{9}$-$\frac{7}{5}$
=$\frac{12}{5}$-$\frac{7}{5}$-$\frac{4}{9}$
=1-$\frac{4}{9}$
=$\frac{5}{9}$;
(3)10-$\frac{7}{12}$-$\frac{5}{12}$
=10-( $\frac{7}{12}$+$\frac{5}{12}$)
=10-1
=9;
(4)$\frac{11}{8}$-( $\frac{3}{2}$-$\frac{5}{4}$)
=$\frac{11}{8}$-( $\frac{12}{8}$-$\frac{10}{8}$)
=$\frac{11}{8}$-$\frac{2}{8}$
=$\frac{9}{8}$;
(5)6.25+$\frac{3}{7}$+$\frac{3}{4}$+$\frac{4}{7}$
=(6.25+$\frac{3}{4}$)+( $\frac{3}{7}$+$\frac{4}{7}$)
=7+1
=8.
点评 分数加减法的计算法则:
①同分母分数相加(减),分子进行相加(减)得数作分子,分母不变;
②异分母分数相加(减),必须先通分,然后,按照同分母分数相加(减)的法则进行运算.
③能简算的要简算.
| A. | 周长相等 | B. | 面积相等 | ||
| C. | 周长和面积都不相等 |