题目内容

求:
1
2
1+
1
2
+
1
3
(1+
1
2
)×(1+
1
3
)
+
1
4
(1+
1
2
)×(1+
1
3
)×(1+
1
4
)
+…+
1
99
(1+
1
2
)×(1+
1
3
)×…×(1+
1
99
)
分析:根据题意,先把分母都化成假分数,再根据分数的拆项的知识,逐步解答即可.
解答:解:
1
2
1+
1
2
+
1
3
(1+
1
2
)×(1+
1
3
)
+
1
4
(1+
1
2
)×(1+
1
3
)×(1+
1
4
)
+…+
1
99
(1+
1
2
)×(1+
1
3
)×…×(1+
1
99
)

=
1
2
3
2
+
1
3
3
2
×
4
3
+
1
4
3
2
×
4
3
×
5
4
+…+
1
99
3
2
×
4
3
×…×
100
99

=
2
2×3
+
2
3×4
+
2
4×5
+…+
2
99×100

=2×(
1
2×3
+
1
3×4
+
1
4×5
+…+
1
99×100
)

=2×(
1
2
-
1
3
+
1
3
-
1
4
+
1
4
-
1
5
+…+
1
99
-
1
100
)

=2×(
1
2
-
1
100
)

=
49
50
点评:先把分母化成假分数,找出规律,根据分数的拆项的知识解答即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网