题目内容
(1+
+
+
)×(
+
+
+
)-(1+
+
+
+
)×(
+
+
).
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 1 |
| 2012 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 1 |
| 2012 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2011 |
考点:分数的巧算
专题:
分析:根据题意,每个括号内都有
+
+
,可以把
+
+
看作一个整体,令它为A,变成(1+A)×(A+
)-(1+A+
)×A,然后根据乘法分配律,把1+A看成一个整体,展开后进行计算即可求出结果.
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 1 |
| 2012 |
| 1 |
| 2012 |
解答:
解:根据题意,把
+
+
看作一个整体,令它为A,那么,
(1+
+
+
)×(
+
+
+
)-(1+
+
+
+
)×(
+
+
)
=(1+A)×(A+
)-(1+A+
)×A
=(1+A)×A+(1+A)×
-[(1+A)×A+
×A]
=(1+A)×A+(1+A)×
-(1+A)×A-
×A
=(1+A)×
-
×A
=
+
×A-
×A
=
.
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2011 |
(1+
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 1 |
| 2012 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2011 |
| 1 |
| 2012 |
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2011 |
=(1+A)×(A+
| 1 |
| 2012 |
| 1 |
| 2012 |
=(1+A)×A+(1+A)×
| 1 |
| 2012 |
| 1 |
| 2012 |
=(1+A)×A+(1+A)×
| 1 |
| 2012 |
| 1 |
| 2012 |
=(1+A)×
| 1 |
| 2012 |
| 1 |
| 2012 |
=
| 1 |
| 2012 |
| 1 |
| 2012 |
| 1 |
| 2012 |
=
| 1 |
| 2012 |
点评:此题乍看不好解决,仔细分析后会发现每个括号都有
+
+
,然后根据乘法分配律逐步解答即可.
| 1 |
| 2009 |
| 1 |
| 2010 |
| 1 |
| 2011 |
练习册系列答案
相关题目