题目内容
5.分析 平面图形密铺的特点:(1)用一种或几种全等图形进行拼接;(2)拼接处不留空隙、不重叠; (3)连续铺成一片. 能密铺的图形在一个拼接点处的特点是:几个图形的内角拼接在一起时,其和等于360°,并使相等的边互相重合.几是内角和为360°、180°的图形均具备这一特征,如正三角形、长方形、正方形、平行四边形、梯形都具备这一特征,正六边形的每个内角都等于60°,也具备这一特点,圆、正五边形等就不具备这样的特点.
解答 解:三角形的内角和等于180°,因此,正三角形能单独密铺;
长方形、梯形的内角和等于360°,因此,梯形、长方形能单独密铺;
正六边形的每个内角都是60°,6个内角可以拼成360°的角,因此,正六边形可以密铺.
即
都能密铺.
故答案为:√.
点评 考查了平面镶嵌(密铺)问题,两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.
练习册系列答案
相关题目
13.盒子里装着黑白两种颜色的球,小明任意摸到的一个球( )是黄球.
| A. | 可能 | B. | 不可能 | C. | 一定 |
10.直接写得数
| 1.6×5= | 7.2÷0.09= | 2.5×0.08= | 24÷1.2= | 10-3.28-4.72= |
| 6.6÷11= | 0.24×5= | 0.54÷0.6= | 15.6-5.7-5.6= | 2.5×1.4= |
15.把一个图形进行平移,图形的( )发生了变化.
| A. | 大小 | B. | 位置 | C. | 形状 |